Artificial Neural Network Approach for Fault Detection in Pneumatic Valve in Cooler Water Spray System
نویسندگان
چکیده
The detection and diagnosis of faults in technical systems are of great practical significance and paramount importance for the safe operation of the plant. The early detection of fault can help avoid system shutdown, breakdown and even catastrophe involving human fatalities and material damage. Since the operator cannot monitor all variables simultaneously, an automated approach is needed for the real time monitoring and diagnosis of the system. This paper presents the design and development of artificial neural network based model for the fault detection of Pneumatic valve in cooler water spray system in cement industry. The network is developed to detect a totally nineteen faults. The training and testing data required to develop the neural network model were generated at different operating conditions by operating the pneumatic valve and by creating various faults in real time in a laboratory experimental model. The performance of the developed back propagation is found to be satisfactory for the real time
منابع مشابه
Developing A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults
Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملDetection of Single and Dual Incipient Process Faults Using an Improved Artificial Neural Network
Changes in the physicochemical conditions of process unit, even under control, may lead to what are generically referred to as faults. The cognition of causes is very important, because the system can be diagnosed and fault tolerated. In this article, we discuss and propose an artificial neural network that can detect the incipient and gradual faults either individually or mutually. The mai...
متن کاملThe use of wavelet-artificial neural network and adaptive neuro-fuzzy inference system models to predict monthly precipitation
In water supply systems, One of the most important components as safety unit and the current controller (Switching flow and regulate the amount of flow) used in the arrangement of lines of water. In this study, according to multiple ponds in Tanguiyeh dam water pipeline to industrial and mining company Gol Gohar Sirjan Butterfly valve used in these ponds using Fluent software simulation has bee...
متن کاملRobust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks
Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...
متن کامل